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Abstract: Bioprocesses are increasingly used for the production of high added value products.
Microorganisms are used in bioprocesses to mediate or catalyze the necessary reactions. This makes
bioprocesses highly nonlinear and the governing mechanisms are complex. These complex governing
mechanisms can be modeled by a metabolic network that comprises all interactions within the cells of
the microbial population present in the bioprocess. The current state of the art in bioprocess control
is model predictive control based on the use of macroscopic models, solely accounting for substrate,
biomass, and product mass balances. These macroscopic models do not account for the underlying
mechanisms governing the observed process behavior. Consequently, opportunities are missed to
fully exploit the available process knowledge to operate the process in a more sustainable manner.
In this article, a procedure is presented for metabolic network-based model predictive control. This
procedure uses a combined moving horizon-model predictive control strategy to monitor the flux
state and optimize the bioprocess under study. A CSTR bioreactor model has been combined with a
small-scale metabolic network to illustrate the performance of the presented procedure.

Keywords: model predictive control; moving horizon flux estimation; metabolic network models;
bioprocess optimization; online state and parameter estimation; dynamic metabolic flux analysis

1. Introduction

Biochemical processes have gained attention in the past decades in producing high
added value products. Microorganisms play an important role in biochemical processes
as these mediate or catalyze the reactions that are required to produce the products of
interest. The mechanisms governing such biochemical processes are often complicated as a
large number of reactions within the microbial cells and interactions between the micro-
bial cells and the reactor medium take place. To summarize and model the mechanisms
governing biochemical processes, metabolic network models have become an important
tool. Metabolic networks comprise all interactions within the cell and between cell and
environment by modeling the metabolites (i.e., the chemical compounds produced, con-
sumed, and interacted with by the microorganisms) as the nodes and the reactions or fluxes
between these different chemical compounds as the edges of a network. Mathematically,
this network can be summarized in a stoichiometric matrix S in which an element Sij
corresponds with the stoichiometric coefficient of the i-th metabolite in the j-th reaction or
flux [1,2]. Genome-scale metabolic network model reconstructions are the result of inten-
sive genomic studies involving numerous experiments. Hence, the result of such a study
is a highly complex metabolic network with often a myriad of reactions and metabolites.
Using genome-scale metabolic networks in an online control setting is to date infeasible as
these models typically contain over 100 metabolites and reactions and hence a high number
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of differential states. Therefore, the current state of the art in model-based bioprocess
optimization relies on macroscopic mass balance models.

This is one of the main reasons the current state of the art in model-based bioprocess
optimization and control relies on macroscopic mass balance models, often only including
biomass, substrate, and product mass balances. Macroscopic mass balance models make
abstraction of the underlying mechanisms governing the studied bioprocess and therefore
miss opportunities in achieving a better process monitoring and control. As there is no
need to account for irrelevant parts of the metabolism for the process under study, genome-
scale metabolic networks can be reduced to low complexity metabolic network models.
The complexity of the metabolic network that should be used for a studied bioprocess
depends on the level of detail required and the amount of experimental data or information
available to identify the network. Hence, low- or medium-complexity metabolic networks
can be used to account for the relevant intracellular mechanisms governing the bioprocess
under study. Results from literature, e.g., [3], indicate that including such metabolic
network models in bioprocess optimization results in an improved process performance
compared with the use of an unstructured macroscopic bioprocess model. In addition,
the intracellular fluxes can be estimated rather accurately from extracellular measurements
using a low- or medium-complexity metabolic network as in e.g., [4–8], enabling an
enhanced bioprocess monitoring by monitoring the flux state, hence the metabolic state of
the microorganisms in the biochemical process.

The current state of the art in model-based bioprocess control is model predictive
control (MPC) in which a process model is used to solve an open-loop dynamic optimization
problem over a time interval, called the prediction horizon to optimize the future of a
process. The optimal control inputs are computed until a new measurement becomes
available. In biochemical processes, not all states can be measured and the states need to be
estimated from the available measurements. For linear systems a Kalman filter can be used
to retrieve an optimal state estimate [9]. For nonlinear systems extended Kalman filter [10]
or the unscented Kalman filter [11] can be used. Alternatively, moving horizon estimation
(MHE) can be used which solves a constrained optimization problem based on a set of
measurements obtained at previous time points and also moves this estimation horizon
when a new measurement is obtained [12–14]. MHE is quite similar to MPC in the sense
that in both approaches a dynamic optimization problem is solved online and at every
sampling instance the employed horizon is shifted. MHE looks at the past to estimate the
states, while MPC looks at the future to compute controls.

In this article, a strategy is presented for online flux estimation and bioprocess control
using low complexity metabolic network models. As indicated previously, one of the typical
problems in online bioprocess control is the limited number of experimental measurements
that are available. Therefore, a dynamic metabolic flux analysis (DMFA) model structure is
combined with three kinetic models to estimate the intracellular fluxes: a constant, a linear,
and a nonlinear model. The state estimation is performed based on MHE, while MPC is
used for the bioprocess control. The presented strategy is applied to a continuous stirred
tank (bio)reactor (CSTR) case study which uses a a low-complexity metabolic network.

The remainder of this article is structured as follows. Firstly, the Methods section
consists of the description of the used model structure for metabolic reaction network-
based modeling and the used kinetic model structures, followed by the introduction of the
combined MHE/MPC strategy. Next, the case study is presented together with the results
obtained after implementing the presented procedure. Finally, the main conclusions of this
contribution are summarized.
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2. Methods
2.1. Metabolic Reaction Network-Based Modeling

For a full overview of metabolic reaction network theory, the reader is referred to [1].
Here, only the final dynamic metabolic flux analysis model structure, which is used for the
simulation and control parts of this work, is given [15]:

dcext(t)
dt

= Sext ·K · u(t) · cbio(t) (1)

dcbio(t)
dt

= s>bio ·K · u(t) · cbio(t) (2)

with cext being the (mext × 1) vector of concentrations of extracellular metabolites (mol/L),
cbio the scalar biomass concentration (gDW/L), Sext the mext rows of the stoichiometric
matrix which correspond to the extracellular metabolites, and sT

bio the row of the stoi-
chiometric matrix which corresponds to the biomass pseudo-metabolite. It is assumed
that the production of biomass can be described by a pseudo-reaction/metabolic flux
(a so-called biomass flux) as illustrated in [15]. This biomass concentration is used in
Equations (1) and (2) to match dimensions of the RHS and the LHS as the (free) fluxes are
expressed per gDW biomass and the metabolite concentrations are expressed in mol/L. u is
the (d× 1) vector of free fluxes (mol/gDW/h), and K is a suitable basis for the intracellular
part of the stoichiometric matrix Sint. As the fluxes are parameterized as a function of
the basis and the free fluxes v = K ∗ u, the choice of the basis is an important one as this
determines the definition of the free fluxes and the complexity of the flux profiles and the
number of parameters to be estimated. The authors of [15] demonstrated that three options
exist to select a basis: (i) a fixed rational basis, (ii) a fixed orthonormal basis, or (iii) an
optimal orthonormal basis. In this case, a fixed rational basis based on fluxes 1, 4, and 5
has been chosen. This matrix is of dimension (n× d), where n is the total number of fluxes
in the network. The number of free fluxes d is equal to n− rank(Sint). This formulation
stems from the pseudo steady state that is assumed at the intracellular level, with respect
to the extracellular dynamics.

This model is only fully defined when all free fluxes are expressed as a function of the
concentrations and possibly environmental conditions like temperature and pH:

u(t) = f(cext, T, pH, . . ., Φ) (3)

with Φ being the parameter vector specific to the model structure which is used. As the
fluxes are defined as specific fluxes, i.e., on a per-biomass basis, they do not depend on the
biomass concentration anymore. Furthermore, in this contribution, only the dependence
on the extracellular metabolite concentrations is considered.

2.2. Moving Horizon Estimation (MHE)

Moving horizon estimation (MHE) estimates states and parameters at a point in time
ti+He from the measurements at this time point and the measurements at the previous He
time points. Hence, an estimation horizon of He + 1 measurements is used for the state
and parameter estimation. Once a new sample is taken at tHe + 1, the estimation horizon
moves one time step, meaning that the measurements at tHe + 1 are used for the state and
parameter estimation while the measurements related to the first point of the previous
horizon (i.e., ti) is discarded [12–14]. This is also illustrated in Figure 1.
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PAST	 FUTURE	

…	

∆t	

ti+1	ti	

	
	
	
	
	
	
Measurements	m	

TIME	ti	+	He	 ti	+	He	+	1	ti	+	He	-	1			

(a) MHE at ti+He .

PAST	 FUTURE	

∆t	

	
	
	
	
	
	
Measurements	m	

TIME	…	ti+1	ti	 ti	+	He	 ti	+	He	+	1	ti	+	He	-	1			

(b) MHE at ti+He+1.

Figure 1. Illustration of two consecutive MHE iterations.

Concretely, a dynamic combined state and parameter estimation problem (in essence,
a dynamic optimization problem) is solved over a time interval [ti, ti+He ]. In this article,
the MHE formulation of [7] is used. This formulation is presented below for completeness.
For more details on this formulation, the interested reader is referred to [7].

min
xc

He ,wi ,...,wi+He−1

i+He

∑
j=i

∥∥mj − y(tj)
∥∥2

V +
i+He−1

∑
j=i

∥∥wj
∥∥2

W + ‖xc
i − x̄c

i ‖P̄i
(4)

subject to:

ẋ(t) = Se ·K · û(x, p) · q>bio · x(t) + (Xin · r− x(t)) · D + ωx(t) (5)

ṗ(t) = ωp(t) (6)

x(ti) = xi (7)

p(ti) = pi (8)

0 = z(t)− Iirr ·K · û(x, p) (9)

y(t) = x(t) (10)

x(t) ≥ 0, z(t) ≥ 0 (11)

with x(t) =
[
c>ext(t) cbio

]>
(t) being the state vector comprising both extracellular metabo-

lites and biomass at t, û the estimated free fluxes, p the flux parameters, q>bio = [0 . . . 0 1]
a row vector selecting the partition of the extracellular stoichiometric Se =

[
S>ext sbio

]
corresponding with biomass, Xin ∈ R4× 2 the matrix of concentrations at the bioreactor
inlet for the different metabolites, and r ∈ R2×1 the vector of control variables manipulating
the feed composition sent to the reactor and D the dilution rate. In addition, the process
noise on the states and parameters is denoted by ωx(t) and ωp(t), respectively. Algebraic
states z(t) have been added for the description of the irreversible fluxes as denoted in
Equation (9).

Note that xc
He

, i.e., the combined state and parameter vector at ti+He and the process
noise estimates wi, . . . , wi+He−1 are the optimization variables for the MHE problem de-
scribed in Equations (4)–(11). Note that the arrival cost parameters x̄c

i and P̄i are updated
via an unscented Kalman filter [16].

2.3. Unscented Kalman Filter (UKF)

The unscented Kalman filter (UKF) is an extension of the unscented transformation to
the Kalman filter. The unscented transform is a way to calculate the mean and variance
of the nonlinear transformation of a random variable that follows a symmetric unimodal
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distribution. In this article, the states and parameters are the nonlinear transformation of the
random variable (i.e., the initial conditions of the states and parameters). In UKF, the sigma
points, a fixed number of deterministically chosen sampling points from the distribution of
the random variable and are then propagated through the nonlinear function. The mean
and covariance of this propagation are subsequently approximated. For the implementation
of the UKF in this work, the sigma points are chosen based on recommendations from [11].
Different strategies can be used to select these sigma points and recently a comparative
study has been presented in [17].

2.4. Model Predictive Control (MPC)

Model predictive control (MPC) solves an open-loop dynamic optimization problem
over a time interval

[
tk, tk+Hp

]
, with Hp as the prediction horizon to optimize the future of

a process. The novel obtained measurements and state and parameter estimates at tk are
used as initial conditions for the open-loop dynamic optimization problem that is solved
at every iteration. This principle is illustrated in Figure 2: based on the state estimate
or measurement at tk a dynamic optimization problem is solved over the time interval[

tk, tk+Hp

]
(a). The solution is applied to the process until a new measurement at tk+1 is

obtained and then a new dynamic optimization problem is solved over
[
tk+1, tk+Hp+1

]
(b).

PAST	 FUTURE	

tk		 tk	+	1	 tk	+	2	

∆t	

tk	+	Hp	…	 TIME	tk	+	Hp	+1	

Reference	
	
	
	
	
State	(x)/	
Output	(y)	
	
Control		
inputs	
(u)	

(a) MPC at time instance tk .

PAST	 FUTURE	

∆t	

tk		 tk	+	1	 tk	+	2	 tk	+	Hp	…	 TIME	tk	+	Hp	+1	

Reference	
	
	
	
	
State	(x)/	
Output	(y)	
	
Control		
inputs	
(u)	

(b) MPC at time instance tk+1.

Figure 2. Illustration of two consecutive MPC iterations.

MPC has become a widespread control strategy and numerous successful applications
to industrial problems have been reported, e.g., [18,19]. MPC typically refers to linear MPC
in which a quadratic objective function is minimized using a linear process model and
subject to linear constraints. In the last decades, nonlinear MPC (NMPC) approaches using
nonlinear process models, constraints, and objective functions have become more popular.

In this article the following (N)MPC formulation for t ∈
[
tk, tk+Hp

]
is used, based

on [20]:

min
x(·), u(·)

∫ tk+Hp

tk

L(x(τ), u(τ), )dτ + M(tk + Hp) (12)
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subject to:

ẋ(t) = Se ·K · u(x, p) · q>bio · x(t) + (Xin · r− x(t)) · D (13)

ṗ(t) = 0 (14)

x(tk) = x̂k (15)

p(tk) = p̂k (16)

0 = z(t)− Iirr ·K · u(x, p) (17)

y(t) = x(t) (18)

x(t) ≥ 0, z(t) ≥ 0 (19)

0 ≥ c(x, r, p, t). (20)

with x̂(tk) being the measured or estimated state values at ti, c(x, r, p, τ), constraint func-
tions on the systemare not comprised by the previous constraints, τ is the time used in
solving the dynamic optimization problems in the NMPC routine, and x and r the states
and controls computed by solving the dynamic optimization problem on the interval[
tk, tk + Hp

]
. Note that for the other symbols the same notation is used as in the MHE prob-

lem (Equations (4)–(11)). As MPC requires that the entire state vector is known, the states
and parameters estimates at tk are denoted by x̂k and p̂k.

2.5. Combined MHE/MPC Strategy

In this article, a strategy combining MHE and MPC is used for the model-based
predictive control of bioprocesses exploiting metabolic network information. The moving-
horizon strategy used in this work is thus different from regular implementations because
of the black-box nature of the flux models which are used. The proposed strategy is
outlined in Figure 3.

The algorithm starts with taking a sample and use an unscented Kalman filter (UKF)
to estimate the combined state and parameter vector and the combined state and parameter
variance-covariance matrix. Subsequently, it is checked whether a sufficient number of
measurements is available to perform MHE, i.e., He + 1 measurements need to be available
or equivalently: tk ≥ tHe . If tk < tHe , the state and parameter estimates from UKF are used
for the MPC step. Otherwise, the state and parameter estimates from the MHE procedure
are used for the MPC step. The control action computed during the MPC step is then
applied to the process until the next sample is obtained. Once the end time t f is reached,
the algorithm is stopped.

This combined MHE-MPC strategy has been implemented in the Pomodoro toolkit [21],
which is available at https://cit.kuleuven.be/biotec/software/pomodoro (accessed on
11 October 2021). Pomodoro is a toolkit that can be used for solving dynamic (multi-
objective) optimization problems and for model-based control and estimation. Pomodoro
uses CasADi [22] as a symbolic framework for the problem formulation and derivative
computation. Orthogonal collocation is used as default to discretize the dynamic opti-
mization problems. A piecewise constant discretization is used for the controls and cubic
Lagrange polynomials with collocation points at the Radau roots are used for the states [23].
The resulting NLPs are solved with IPOPT [24].

https://cit.kuleuven.be/biotec/software/pomodoro
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Obtain	measurement	
(Experiment/Simula4on)	

àm(tk)	

UKF	
àxc,	P	

tk<tHe?	
MPC	
àr	

Yes	

No	

MHE	
àxc	

Start	

tk=tf?	

STOP	

Yes	

No	

Apply	r	to	the	process	
un4l	a	new	sample	is	

available.	

(a) Algorithm flowsheet of the combined MHE-MPC strategy

PAST	 FUTURE	

tk	=	
ti+He	

tk	+	1	…	 tk-1	=	
ti+He-1			

tk	+	2	

∆t	

tk	+	Hp	…	 …	ti+1	
TIME	tk	+	Hp	+1	

Reference	
	
	
Measurements	m	
	
State	(x)/Output	(y)	
	
	
	
Control	inputs	(u)	

ti	

(b) MHE-MPC at time instance tk .

PAST	 FUTURE	

∆t	

TIME	tk	=	
ti+He	

tk	+	1	…	 tk-1	=	
ti+He-1			

tk	+	2	 tk	+	Hp	…	 …	ti+1	 tk	+	Hp	+1	ti	

Reference	
	
	
Measurements	m	
	
State	(x)/Output	(y)	
	
	
	
Control	inputs	(u)	

(c) MHE-MPC at time instance tk+1.

Figure 3. Overview of the combined MHE-MPC strategy: (a) algorithm, (b) combined MHE-MPC at
tk, and (c) combined MHE-MPC at tk+1.

3. Results and Discussion

The proposed combined MHE-MPC strategy for metabolic network model-based
predictive bioprocess control has been implemented on a CSTR bioreactor using a low-
complexity metabolic network. The general setup for the implementation of this case
study is shown in Figure 4. Two different models are used: (i) the simulation model,
which gives the process dynamics, and to which output noise is added to get the process
measurements, and (ii) the estimation/control model, which is an approximation since the
process model is not known. It is important to note that only the flux kinetics are assumed
to be unknown in the estimation/control model. The metabolic reaction network in the
estimation/control model is for this case study the same as the one used in the simulation
model. Additionally, the general model structure, i.e., the transport terms, etc., are the
same for both the simulation and the estimation/control model.
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SIMULATION	MODEL	

1.  Simulate		process	
dynamics.	
	

2.  Add	noise	to	the	outputs.	
	
	
	
	
PROCESS	MEASUREMENTS	

ESTIMATION/CONTROL	
MODEL	

•  Unknown	flux	kine<cs.	
	

•  Assump<on	on	flux	
kine<c	model	structure.	

	
	
	
	

UKF	!	MHE	!	MPC	
	

≠	
Measurements	

mj	

Control	inputs	
r	

Figure 4. General setup with simulation model and estimation/control model.

3.1. Case Study Description

The bioprocess in this case study is a continuous bioreactor with two substrates and
two products. The composition of the medium that is fed to the bioreactor is controlled,
but the flow rate of this feed is always kept constant, as well as the flow rate of the
spent medium that is removed from the bioreactor. Since both these flow rates are equal,
the volume of the bioreactor is kept constant. Mathematically, the dynamic model consists
of (i) the reaction term as defined in Equations (21) and (22), and (ii) transport terms
because of the supply of substrate to the reactor and removal of medium from the reactor.
The resulting model is the following:

dcext(t)
dt

= Sext ·K · u(t) · cbio(t) + (Cin ·w− cext) · D (21)

dcbio(t)
dt

= sT
bio ·K · u(t) · cbio(t)− cbio · D (22)

with F as the flow rate (L/h) in and out of the bioreactor and V the volume (L) of the
bioreactor, making D = F

V the dilution rate (1/h). In this article, the dilution rate is fixed
to 0.1 h−1. The (3× 3) substrate composition matrix Cin is made up of three columns that
express the composition of each of the three feed mixtures, and the (3× 1) control vector
w contains the weights of these feeds in the final mixture which is sent to the bioreactor.
To make sure the total flow rate to the bioreactor is equal to the outgoing flow rate, these
controls should always sum to one:

3

∑
i=1

wi = 1 (23)

This way, there are only two independent controls in the system. The numerical values
for the model parameters are given in Table 1.

The metabolic reaction network, simulation model, and the estimation/control model
are briefly discussed below.
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Table 1. Model parameter values.

Model Parameter Numerical Value

F 0.1 L/h
V 1.0 L

Cin

6.0 0.0 0.0
0.0 9.0 0.0
0.0 0.0 0.0

 mol/L

3.1.1. Metabolic Reaction Network

The metabolic reaction network that is used in the case study is shown in Figure 5 on
the left, along with the corresponding Sint, Se, Iirr, and the selected null basis K (note that
K> is depicted in Figure 5) matrices. It consists of threee extracellular metabolites (Aext,
Eext, Fext) and biomass (X), four intracellular metabolites (A, B, C, D), and seven fluxes (v1,
v2, v3, v4, v5, v6 and vbio). Thus, the number of free fluxes is three.

Sint	

v1			v2			v3			v4			v5			v6			vbio				

Iirr	=		

1	
0	
0	
0	
0	

0	
0	
0	
0	
0	

0	
0	
1	
0	
0	

0	
0	
0	
0	
0	

0	
0	
0	
0	
1	

0	
1	
0	
0	
0	

0	
0	
0	
1	
0	

extracellular	
intracellular		

Aext	 A	

B	

C	

X	
v1	 v5	 vbio	D	

Fext	

Eext	

S	=		

A	
B	
C	
D	
Aext	
Eext	
Fext	
X	

Se	

1	
0	
0	
0	
-1	
0	
0	
0	

-1	
1	
0	
0	
0	
0	
0	
0	

-1	
0	
1	
0	
0	
0	
0	
0	

0	
-1	
0	
2	
0	
-1	
0	
0	

0	
-2	
1	
0	
0	
0	
1	
0	

0	
0	
-1	
1	
0	
0	
0	
0	

0	
0	
0	
-1	
0	
0	
0	
1	

v1			v2			v3			v4			v5			v6			vbio				

v1			v2			v3			v4			v5			v6			vbio				

KT	=		
1	
0	
0	

	1	
-1	
-2	

0	
1	
0	

	1	
-1	
-1	

	1	
	1	
-1	

0	
1	
2	

0	
0	
1	

Figure 5. Metabolic network and characterizing matrices for the CSTR bioreactor case study.

3.1.2. Simulation Flux Model

For the simulation of the measurements, these were chosen as flux 1, 4 and 5. Measure-
ments were simulated by choosing reference profiles for these three fluxes, and simulating
the states using the dynamic system.

u1,ref =
cAext

1.5 + cAext
(24)

u4,ref = 0.2 · cEext

3 + cEext
(25)

u5,ref =
1

1 + cFext
(26)

This simulation flux model is used to generate measurements over a time range of
140 h, measuring Aext, Eext, Fext. Additive, independent, Gaussian measurement noise was
added to the output of the simulation model with 0.01 as standard deviation. The initial
conditions were set to x0 = [0.5760, 3.5527, 2.4976, 0.8736]>. The process noise was also
considered to be of the same type but with a standard deviation of 0.001. The standard
deviations to be used in the arrival cost parameters P̄0 is taken equal to the measurement
variance for the states and set to 1.0 for the parameters. Different sampling frequencies are
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studied and the same holds for the prediction and estimation horizons Hp and He, which
are chosen to be equal in this article. This is not necessarily the case in practice.

3.1.3. Estimation/Control Flux Model

Three different kinetic flux model structures are studied as estimation/control flux
model, a constant, a linear, and a non-linear model.

The constant model considers the fluxes to be constant:

u(t) = pu (27)

with pu ∈ Rd×1, thus three parameters to be identified.
In the linear model, the fluxes are just a linear function of the extracellular concentrations:

u(t) = C · cext(t) (28)

with C as the (d×mext) matrix of parameters that define the linear relationship between
fluxes and metabolite concentrations. This results in nine parameters to be identified.

The non-linear kinetics model that is used in this work is the general biological
reaction kinetics model of [25]. This model can describe both positive and negative effects
of components on reaction rates, and uses only one parameter per component to describe
both effects, and one maximum rate parameter per flux, i.e., (mext + 1)× d parameters:

ui(t) = umax,i ·
mext

∏
j=1

αij(cext,j(t)) (29)

with

αij(cext,j(t)) =


cext,j

cext,j+D2
ij

if Dij ≥ 0

1
1+cext,j ·D2

ij
if Dij < 0

(30)

In these equations, umax is the (d× 1) vector of maximum rate parameters, and D
is the (d×mext) matrix of modulation parameters. If these parameters are positive, they
describe a positive activation/saturation effect of the concentrations on the fluxes, if they
are negative, an inhibition effect is represented. Hence, 12 parameters need to be identified
i.e., 4 parameters per free flux.

3.2. Numerical Results

Initially, the CSTR bioreactor is studied over a period of 140 h with a sampling rate
of 1 h, resulting in 140 simulation intervals. During the first 10 h, a constant ratio of 50%
Aext and Eext is fed to the CSTR reactor. A horizon length of 4 h has been selected for both
the estimation horizon as the prediction horizon (i.e., H = He = Hp = 4 h, corresponding
to 20 intervals). This means that after 4 h, the first MPC control action is applied to the
process. Moreover, the set point xSP for the MPC is defined as follows:

xSP =

{
[0.5448, 1.3355, 3.3852, 1.4845]> if 40 h ≤ tk ≤ 80 h
[0.5760, 3.5527, 2.4976, 0.8736]> else

(31)

3.2.1. State Estimates

In Figure 6 the simulated state profiles are depicted together with the estimates
obtained when using the estimation/control model. The full lines indicate the simulations
while the markers indicate the estimates. For all different models the proposed strategy
results in accurate state estimates. This complies with the results presented in [7]. For an
extensive discussion focusing only on state estimation the interested reader is referred
to [7]. Recall that the arrival cost matrices are computed with an unscented Kalman filter
in this article, contrary to the arrival cost computation in [7]. In [7] the arrival cost is



www.manaraa.com

Appl. Sci. 2021, 11, 9532 11 of 18

approximated by a quadratic cost and linearizing the nonlinear functions to obtain a linear
least squares problem that can be solved analytically and results in an analytical expression
for the arrival cost [14].

Figure 6. Simulated and estimated concentration profiles with the different flux models.

A notable difference can be observed when comparing the state profiles for the dif-
ferent flux models. The cause for this difference can be twofold: (i) the linear and Haag
models are more similar to the true flux model than the constant flux model hence resulting
in more similar flux profiles, and (ii) the control profiles for the true, linear, and nonlinear
flux models are more similar, compared with the constant flux model. This is investigated
in more depth below.

3.2.2. MPC Tracking Performance

In Figure 7 the extracellular metabolite concentration profiles (i.e., the state profiles)
are depicted for the different methods, together with the set point that is used for the
different concentrations during the MPC procedure. For the extracellular metabolites that
are consumed, i.e., Aext and Eext, the set points are better tracked by the true flux model and
the constant flux model than by the linear and Haag models. The extracellular metabolites
that are excreted (or produced) by the cells are better approximated with the true, linear,
and Haag flux models. These observations are made from Figure 7.
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Figure 7. Concentrations and set points for the different extracellular metabolites, obtained with the
different flux models.

In order to quantify the difference in tracking performance between the MPC control
strategies obtained with the different flux models, the unscaled absolute values of the
absolute tracking errors for each state are depicted in Table 2. From this table it becomes
clear that the constant model has the lowest tracking error for the first state Aext. For Eext
the tracking error is the lowest for the true flux model, while the constant and linear models
perform slightly worse. The Haag model performs the worst for Eext. Fext is comparably
well tracked by the true model, linear model, and Haag model. The constant flux model
has a poor tracking for Fext. The biomass concentration is well tracked by the true model,
linear model, and Haag model, while the constant model is again performing poorly. These
observations confirm the observations made from Figure 7.

Table 2. Absolute values of the absolute tracking errors, i.e., difference between state and set point.

True Constant Linear Haag

Aext 13.44 5.69 19.48 24.38
Eext 148.52 191.61 172.80 234.86
Fext 14.99 57.87 14.66 15.06

Biomass 6.19 41.64 6.96 6.62

For completeness, the control profiles are depicted in Figure 8. The control profiles
computed with the constant flux model are flatter than the control profiles computed with
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the other flux models. The difference between these control profiles confirms the tracking
performance discussed above.

Figure 8. MPC control actions obtained with the different flux models.

3.2.3. Influence of Horizon Length
Same Horizon and Estimation Horizon

Firstly, the influence of the horizon length on the tracking performance is studied
by selecting the same horizon for estimation and prediction (control): H = He = Hp.
Four different horizons have been simulated, assuming that a sample is taken every hour:
H = 2 h, H = 4 h, H = 12 h, H = 24 h. The absolute values of the absolute tracking error
for all states are depicted in Figure 9.

Globally, it can be observed that the MPC control performance obtained with the
true flux model and the linear flux model are more similar for a small horizon length, i.e.,
H = 1 h. However, no clear global trends can be observed for the increase of the horizon
length. As both the estimation and prediction horizon have been modified, it is difficult
to interpret these graphs. Therefore the effect of only changing the prediction horizon or
solely changing the estimation horizon is addressed in the next paragraphs.
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Figure 9. Cont.
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Figure 9. Absolute values of the absolute tracking error in case of H = He = Hp for the four states,
i.e., the extracellular metabolite concentrations.

Influence of Only Changing the Prediction Horizon

In this paragraph the estimation horizon is set to He = 4 h and the prediction horizon
has been varied as in the previous paragraph. Four different horizons have been simulated,
assuming that a sample is taken every hour: Hp = 2 h, Hp = 4 h (4 h), Hp = 12 h,
Hp = 24 h. In Figure 10, the absolute values of the absolute tracking error are displayed.
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Figure 10. Absolute values of the absolute tracking error in case of He = 4 h for the four states,
i.e., the extracellular metabolite concentrations.
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Increasing the prediction horizon results in a slight reduction of the tracking error
of all states using the true flux model. For the other flux models, such clear observations
cannot be made.

Influence of Only Changing the Estimation Horizon

Contrary to the previous paragraph, the estimation horizon is varied and the pre-
diction horizon is kept constant at 4 h. Following estimation horizons have been studied
for a sampling rate of 1 h: He = 2 h, He = 4h (4 h), He = 12 h, He = 24 h. In Figure 11,
the absolute values of the absolute tracking error are displayed.

The estimation horizon has a small effect on the MPC tracking performance, except for
the linear flux model, in which the estimation horizon of 24 h clearly results in a higher on
the MPC tracking error for all extracellular metabolites except Fext.
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Figure 11. Absolute values of the absolute tracking error in case of He = 4 h for the four states,
i.e., the extracellular metabolite concentrations.

3.2.4. Influence of Sampling Frequency

The influence of the sampling frequency on the tracking performance has been studied
for an estimation and horizon length of 4 h (H = He = Hp = 4 h). Four sampling frequency
scenarios have been studied: 12 min, 30 min, 1 h, and 2 h. The MPC tracking error divided
by the number of sampling points has been depicted in Figure 12.

It is expected that a higher sampling frequency will result in better tracking. This
corresponds with lower sampling times dt. In Figure 12 this is only observed for the true
model. For the linear model this is the case for all states, except Fext. In the Haag model,
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this is not observed for Eext. A lower sampling frequency only results in a better tracking
for the constant flux model for Aext.
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Figure 12. Absolute values of the absolute tracking error divided by the number of measurements
for the four states for different sampling times with H = He = Hp = 4 h.

4. Conclusions

One of the current limitations in online bioprocess control is the use of macroscopic
models (that only account for substrate, biomass, and product mass balances), as the avail-
able process knowledge on the relevant underlying intracellular mechanisms is not fully
exploited and as such opportunities are missed towards an optimal bioprocess operation.
In this article, a procedure for metabolic network-based model predictive control has been
presented, by combining online flux estimation and bioprocess control using metabolic
network models. This procedure firstly uses moving horizon estimation (MHE) to estimate
the states and fluxes from the available measurements and subsequently solves a model
predictive control (MPC) problem to determine the optimal control strategy for the studied
bioprocess. To illustrate the performance of this procedure, a case study combining a CSTR
bioreactor model with a metabolic network model has been implemented. Three different
model structures (a constant, a linear, and a nonlinear model) have been compared, clearly
indicating that the linear flux model outperforms the nonlinear Haag flux model and the
constant flux model. The true model is, as expected, outperforming the other models.
In addition, the influence of the horizon lengths and sampling frequency on the MPC
tracking performance has been studied. While an increase of the prediction horizon length
was expected to reduce the tracking error, such observation could only be made for the true
model. An increase in sampling frequency (or reduction in sampling time) was expected to
reduce the tracking error, but this observation could only be made for the true model and
for the linear model.
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In future work, the presented procedure will be applied to the online control of
bioprocesses involving large-scale metabolic networks. In addition, uncertainty will be ac-
counted for during the MPC routine. Furthermore, the presented metabolic network-based
model predictive control procedure can also be combined with high-throughput biological
datasets [26,27] and advanced metabolomics techniques as e.g., low-frequency NMR, to im-
prove the metabolic model predictions and process monitoring capabilities [8,27]. One
of the current limitations of metabolic network models and methods as metabolic flux
analysis is the inherent pseudo-steady state assumption. This assumption is not always
valid, certainly not at timescales of multiple scales due to shifting from exponential growth
phase to stationary phase. The authors of [28] proposed a hybrid modeling approach,
combining machine learning with metabolic network modeling which provided accurate
predictions for amino acid consumption rates in Chinese Hamster Ovary Cells. Such hybrid
models could also be used in the proposed metabolic network-based MPC procedure.
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